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The mean distribution of concentration of a solute over the cross-section of a 
tube through which a solvent is flowing is given approximately by the solution of 
an equation of the heat-conduction type (Taylor 1953,1954). One solution of this 
equation is a Gaussian curve but observed distributions are normally not 
Gaussian. On the basis of an equation derived by Chatwin (1970) it is shown here 
that the deviation of an observed distribution from the Gaussian curve with the 
same mean and variance is not determined by the heat-conduction equation, 
although the practical importance of this remark may be small if the S t i a l  
distribution of solute is greatly elongated along the tube axis. 

1. Introduction 
When a solute is injected into a tube through which solvent is flowing it 

spreads out along the axis, Ox say, under the combined effects of advection with 
the solvent, and molecular and/or turbulent diffusion. If this diffusion can be 
described by the gradient law, if the tube has constant cross-section and if the 
solute can be regarded as a passive marker then, for large values of the time t ,  
the mean concentration of solute over the cross-section C, is approximately given 
by the solution of a simple equation of the heat-conduction type (Taylor 1953, 
1954). This equation can be written 

where U is the discharge velocity and K ,  is a constant which depends on the 
velocity profile and the mechanics of the diffusion process. Por a cloud of solute of 
finite extent in which (1.1) holds, it is easy to show that the centre of mass xg and 
the variance u2 of the cloud have rates of change U and 2K2 respectively and it is 
possible, and convenient, to choose the origins of x and t (the latter may be 
virtual) so that 

xg = Ut,  CT' = 2K2t. ( 1 . 2 )  

It is also convenient to choose units of concentration so that 

C*dx = 1. 
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Now one solution of (1.1) is the Gaussian curve 

which has the property that all its cumulants of order greater than two vanish. 
The general solution of (1.1) does not have this property, nor do observed dis- 
tributions of C,(except as t -+ co). This remark suggests the following question 
which was put to me by Professor H. B. Fischer. Can the evolution of observed, 
but non-Gaussian, distributions of C, be described by more general solutions of 
(1.1) than (1.4) with greater accuracy than that given by (1.4)? This note shows 
that the answer to this question is no, except possibly for special initial distribu- 
tions. The reason for this is that (1.1) is approximate and that the degree of 
approximation is such that the cumulants of order greater than two are not in 
general given, even approximately, by its general solution. 

2. The values of the absolute cumulants of C, for large times 
It is shown in Chatwin (1970) that, formally, C, satisfies 

as t -+ 00, where K,, K,, . . . are constants depending, like K,, on the particular 
velocity profiles and diffusion processes in the flow. Equation (1.1) is obtained 
from (2.1) by neglecting all terms except the first one on the right-hand side. It is 
easy to show, using the moment method of Aris (1956), that the terms in (2.1) 
involving K,, K,, .. ., do not affect xg and a2, so that the results in (1.2) are still 
valid. The differences between (2.1) and (1.1) only appear when other shape 
parameters like the cumulants of order greater than two are considered. 

It is neatest to work with the following variables: 

x = ( x - x g ) / v ,  p(X,a) = ac,. (2.2) 

Thus X is the 'standard measure' and, from (1.3), 

m [ p(X,a)dX = 1. 
J -m 

If #(k, a) is defined by 

$(k, a) = Sm p ( ~ ,  v)eikX&X, 

then, by definition (Kendall & Stuart 1958, pp. 67-68), 

-m  

where A, is the nth absolute cumulant of C,. In  writing (2.3) the facts that 
A, = 0 and A, = 1, which follow from (1.2), have been used. 

Equation (2.1) can be transformed into an equation forp in terms of X and v. 
When the Fourier transform of this equation with respect to X is taken the 
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resulting equation can be written (after some algebra and integrations by parts) 

(if33 K ,  (ik)4 K ,  -+-- a@ a@ 
aa ak a K, a, K,"' a - + k -  = (ik)Z-- 

This equation can be integrated by using a new pair of dependent variables, 
&/a and ik for example. It then follows that its general solution is 

(ik), K3 ( i i ~ ) ~  K4 @ = f  - +- (ik)2-- -+-- f:) :[ a K ,  a, K,'" 

where f is any function whose Taylor series begins, for consistency with (2.3), with 
the term in (iI~/a)~. 

On comparing coefficients of (ik)" in (2.3) and (2.4) it follows that as t + co and 
for n > 3, 

In  particular A, and A,, which are commonly used as measures of skewness and 
kurtosis respectively, satisfy 

(2 .5)  A, = &( - 1)nn ! (K,/K,)+-"+ O(a-,). 

} (2.6) 
, 

A, = - 3(K3/K&1+ O(V-3) = -i.J2K3K$t-k + O(t-%), 
A, = 12(K,/K,)a-2 + O(a-4) = 6K4KT2t-I+ O(ta). 

The result for A, is, in effect, given by h i s  (1956), and Sayre (1968) makes the 
explicit point that (1.1) does not describe the behaviour of A, correctly. 

Now the K, are only exceptionally zero. It therefore follows from (2.5) that 
(1.1) does not predict the correct behaviour of A , ( n  > 3) as t +  co (since (1.1) is 
obtained from (2.1) only by setting K,  zero (n > 3)). Since the A,(n B 3) define 
the deviations of the observed distribution from Gaussianity it follows that there 
is no more justification for describing non-Gaussian distributions of C, by non- 
Gaussian solutions of the heat-conduction equation than for describing them by 
(1.4). The only qualification, to be discussed further in $3, occurs when the 
initial distribution of C,, which affects the term of O(a*) in (2.5), is such that the 
term in (2.5) of O(a2-n) only dominates that of O(cr-*) when both are experi- 
mentally indetectable. This only occurs when one or more cumulants are initially 
very large or, equivalently, when the cloud of solute is initially spread out over 
a distance very large compared with the mean radius of the tube cross-section. 

The set of cumulants determine C, uniquely and it is possible to derive an 
expression for C, in terms of its cumulants (Chatwin 1970). 

3. Some long-term effects of the initial distribution 
The initial distribution affects the term of Ofa-72) in (2.5), but not the leading 

term. The precise dependence of this term on the initial distribution can be 
determined, at least in theory, by forward integration of the exact equations 
from t = 0. Nevertheless, it  is possible to see by means of an example that the 
initial distribution may strongly affect the time after which a particular A, is 
given, to good approximation, by the first term in (2.5). Indeed this time may be 
so large that after it has elapsed the value of the particular A, will be smaller than 
can be detected in an experiment. 
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Consider a single blob of solute released in a tube in which a is a typical length 
of the cross-section and D is a typical lateral diffusivity. If the initial variance of 
the blob is not much larger than a2, then after a time of order a2/5D the dispersion 
process will be governed by (2.1) and after a time of order a2/D by (1.1) (Chatwin 
1970). After a total time, say T ,  depending on the sensitivity of the apparatus 
being used to measure concentration the profile will be Gaussian, with variance 
ug , where 

u$ = 2K,t+constant. (3.1) 

Notice that by suitable choice of the origin of time, the constant in (3.1) can be 
made zero (in accordance with remarks in $1) but this choice will for the moment 
be postponed. 

Now consider a second experiment in which two blobs, both equal to the blob 
just considered, are released at a distance 2x* apart. After time T the distribution 
of concentration in each blob will be Gaussian so that, by superposition and in 
accordance with (1.3), 

c, = 2a*(2n)+ 1 
(z - ut 2u: - x*)2 ] +exp { - (z-ut+x*)2]]. 2gg (3.2) 

The value of x, given by (3.2) is consistent with (1.2); the value of g2 is, on integra- 
tion, given by 

0 2  = cr; + xi. (3.3) 

This can be made consistent with (1.2) by virtue of (3.1) and the remarks which 
follow it. 

The values of the absolute cumulants associated with any one blob cannot be 
detected, by definition of T. However, it  does not follow that the same is true for 
the distribution formed by both blobs since the absolute cumuhnts are not 
linear functions of C,. Clearly the odd cumulants are zero by symmetry but, for 
example, 

(3.4) A, = - 2(x,/44 = - * ( X Z / K , ~ ) ~  

on integration. This is consistent with (2.5) since the term involving K,  became 
negligible after time T .  Thus if xi K,T there will be a substantial period 
during which A, is significant and determined solely by the initial distribution. 
After a time much greater than X:/R,, the value of A, and higher cumulants 
will be negligible and the form (3.2) will reduce to the single Gaussian expression, 
(1.4). 

The example just given does not invalidate the result of $2, that the develop- 
ment of the higher-order cumulants cannot be described by (1.1) as t +  co, but 
shows rather that the cumulants may be negligibly small before (2.5) becomes 
useful, if the initial variance of the whole distribution is much larger than a2. 

I am indebted to Professor G. K. Batchelor for suggesting the useful example 
just discussed. 
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